MATH 1010A Notes

Week 6 (Day 1)

Introduction
Topics to cover

- Equation of Tangent Line (pending, cos not appeared in A1-A3)
- Implicit Differentiation
- MVT

Implicit Diff

Having discussed "almost" all rules about derivatives, we mention one more (very very important) rule:

Given an equation of the form

$$
f(x, y)=0
$$

Where on the LHS we have a "function of two variables" and on the RHS a "constant".

Can we differentiate y w.r.t. ? If "yes", what is the reason behind?

Answer:

Yes. Reason = "Implicit Function Theorem". In school, we learned that the equation $x^{2}+y^{2}=a^{2}, a>0$ defines a circle.

We can make y the "subject" to get $y= \pm \sqrt{x^{2}-a^{2}}$ hence y is a function of x.

In the same way, $x=$ function(s) of y.

Notation

Let's denote " y is a function of x " by $y=y(x)$. Then we obtain after some work $y^{\prime}=-\frac{y}{x}$

The Implicit Function Theorem says that "if $f(x, y)=c$, then $y=y(x)$ or $x=$ $x(y)$ " (if some assumptions are made on the function f).

Using this, we can find y^{\prime}, x^{\prime} in, for example, $\left(x^{2}+y^{2}\right)^{2}-x^{2}+y^{2}=0$

Application

One good application of the above is

Example

Find $\frac{d(\arcsin x)}{d x}$.
Solution:

Ask the question: "What is $\arcsin (x)$?" The answer (without worrying about 1-1, range etc.) is:

$$
x=\sin (y), \text { then } y=\arcsin x
$$

The equation on the left-hand side can be rewritten in the form $f(x, y)=c$. To see this, do the following:

$$
\sin (y)-x=0
$$

Where the LHS is of the form $f(x, y)$.

Now use implicit D to get

$$
\frac{d \sin y}{d x}-\frac{d x}{d x}=0
$$

Hence giving

$$
\begin{gathered}
\frac{d \sin y}{d y} \frac{d y}{d x}-1=0 \\
\frac{d \sin y}{d y} \frac{d y}{d x}=1 \\
\frac{d y}{d x}=\frac{1}{\cos y}
\end{gathered}
$$

The remaining problem is to "rewrite" the RHS in terms of x. This is done by using

$$
x=\sin (y), \text { i. e. } 1-x^{2}=\cos ^{2}(y) \text { i. e. } \cos (y)= \pm \sqrt{1-x^{2}}
$$

Putting this back into the formula for $\frac{d y}{d x}=\frac{1}{\cos y}$ gives

$$
\frac{d y}{d x}= \pm \frac{1}{\sqrt{1-x^{2}}}
$$

Mean Value Theorems

One great applications of finding derivatives is Taylor's Theorem (our next goal), mentioned a long time ago. To get that one, we need the following

Rolle's Theorem

Let $f:[a, b] \rightarrow R$ be (i) continuous at each point in $[a, b]$, (ii) $f(x)$ is differentiable at each interior point, (iii) $f(a)=f(b)$.

Then there is at least one point in (a, b) so that $f^{\prime}(c)=0$.

Related to this is the LMVT

Lagrange's MVT

If in the above theorem, we remove condition (iii), then we get

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(d)
$$

Application

A nice application is this:
Claim: If $f(x)$ satisfies $f^{\prime}(x)>0$ at each point in its domain, say (a, b), then $f(s)<f(t)$ whenever $s<t$.

Solution: Use LMVT for the domain $[s, t] .([s, t]$ is a subset of $[a, b]$, so it is also a domain).

Then we have $\frac{f(t)-f(s)}{t-s}=f^{\prime}(p)$ for some $p \in(s, t)$. But now $f^{\prime}(p)>0$ so the fraction on the LHS must be >0. This gives

$$
\frac{f(t)-f(s)}{t-s}>0
$$

Remembering that we have $t>s$, so the denominator is >0. This forces the
numerator to be also >0.

Hence we have shown: "Whenever $t>s$, then $f(t)>f(s)$."

